

Pt₃Ir cluster complexes : butterfly clusters with iridium at a wingtip

Greg J. Spivak,^a Glenn P. A. Yap^b and Richard J. Puddephatt^a*

^aDepartment of Chemistry, University of Western Ontario, London, Ontario, Canada N6A 5B7

^bDepartment of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4

(Received 17 March 1997; accepted 23 March 1997)

Abstract—The new coordinatively unsaturated clusters $[Pt_3Ir(\mu-CO)_3(CO)(\mu-dppm)_3]^+$ and $[Pt_3Ir(\mu-CO)_3\{P(OPh)_3\}(\mu-dppm)_3]^+$ are fluxional, butterfly clusters with iridium at a wingtip position. © 1997 Elsevier Science Ltd

Keywords: platinum; iridium; cluster.

There is current interest in the modelling of bimetallic catalysts, such as Pt-Ir, Pt-Re and Pt-Sn on alumina which are important in petroleum refining, by well characterized heteronuclear cluster complexes [1]. Of the above metal combinations, mixed Pt/Ir cluster complexes are the least developed [1b]. The few crystallographically characterized examples include $[Pt_2Ir_2(\mu-CO)_3(CO)_4(PPh_3)_3]$ [2], 1, $[Ir_3Pt_3(\mu CO_{3}(CO)_{3}(\eta^{5}-C_{5}Me_{5})_{3}$ [3], and $[PtIr_{4}(CO)_{9}(\mu (CO)_n$ ²⁻ (n = 3 or 5) [4], and the rarity can be traced to the difficulty of devising planned synthetic routes. For example, cluster 1 was separated from a mixture of compounds formed by reaction of $[Pt_{12}(CO)_{24}]^{2-1}$ with $[IrCl(CO)(PPh_3)_2]$ [2]. This article reports the synthesis of the coordinatively unsaturated 58 electron clusters $[Pt_3Ir(\mu-CO)_3(CO)(\mu-dppm)_3][PF_6]$, 2, and $[Pt_3Ir(\mu-CO)_3{P(OPh)_3}(\mu-dppm)_3][PF_6], 3, dppm =$ Ph₂PCH₂PPh₂; it is shown that they have an unexpected butterfly structure with iridium at a wingtip position.

By analogy with the known reaction of $[Pt_3(\mu_3-CO)(\mu-dppm)_3]^{2+}$, 4 with $[Re(CO)_5]^-$ to give the tetrahedral 54-electron Pt_3Re cluster $[Pt_3\{\mu_3-Re(CO)_3\}(\mu-dppm)_3]^+$ [5], it was considered that the reaction of 4 with $[Ir(CO)_4]^-$ might give a tetrahedral Pt_3Ir cluster cation. However, the reaction of 4 $[PF_6]_2$ with

[PPN][Ir(CO)₄] (PPN = (PPh₃)₂N⁺) in dry CH₂Cl₂ under N₂ yielded the dark red, air-sensitive cluster [Pt₃Ir(μ -CO)₃(CO)(μ -dppm)₃][PF₆], **2**, which has an unexpected butterfly structure (Scheme 1).† No further reactions were observed when **2** was treated with an additional equivalent of [PPN][Ir(CO)₄]. The terminal carbonyl ligand in **2** was easily replaced by reaction with P(OPh)₃ to give the phosphite derivative [Pt₃Ir(μ -CO)₃{P(OPh)₃}(μ -dppm)₃][PF₆], **3**, Scheme

[†] Spectroscopic data for 2: IR (Nujol): ν (CO) = 1982 (m), 1890 (s), 1807 (m), 1765 (m) cm⁻¹, ³¹P{¹H} NMR (acetoned₆, 23°C): δ = -11.9 [s, ¹J(PtP) = 3132 Hz, ²J(PtP) = 134 Hz, ³J(PP) = 194 Hz]. Spectroscopic data for 3: IR (Nujol): ν (CO) 1885 (s), 1807 (m), 1765 (m) cm⁻¹. ³¹P{¹H} NMR (acetone-d₆, 23°C): δ = -12.4 [1: 1 doublet, ¹J(PtP) = 3242 Hz, ²J(PtP) = 158 Hz, ³J(PP) = 182 Hz, ³J(PP) = 16 Hz dppm]; δ = 121.9 [1:4:7:4:1 quintet of septets, ²J(PtP) = 508, ³J(PP) = 16 Hz, P(OPh)₃].

1, whose structure has been determined by X-ray diffraction.[†]

The structure of the cation 3 is shown in Fig. 1, and it is clear that Pt_3Ir core has a butterfly structure

Fig. 1. A view of the inner core of the cluster cation $[Pt_3Ir(\mu-CO)_3{P(OPh)_3}(\mu-dppm)_3]^+$, 3, illustrating the near planarity of the P(1)IrPt(1)Pt(2)(μ -CO)_3 unit. The μ -dppm ligands, which bridge each edge of the Pt_3 triangle, and the phenyl groups of the phosphite ligand, are omitted for clarity. Selected distances: Ir-Pt(1) 2.679(1), Ir-Pt(2) 2.727(1), Ir-Pt(3) 3.002(1), Pt(1)-Pt(3) 2.634(1), Pt(1)-Pt(2) 2.711(1), Pt(2)-Pt(3) 2.649(1) Å; the carbonyl bridges are roughly symmetrical, Ir-C(1)-O(1) 145(2), Pt(1)-C(1)-O(1) 135(2), Ir-C(2)-O(2) 134(2), Pt(2)-C(2)-O(2) 144(2)^{\circ}. Thermal ellipsoids are drawn at 30% probability.

with iridium at one of the wingtip positions. Thus the distance Pt(3)–Ir of 3.002(1) Å is considerably longer than the other Pt-Ir or Pt-Pt distances [range 2.634(1)-2.727(1) Å] and is best considered a nonbonding distance. The hinge angle Ir-Pt(1)-Pt(2)-Pt(3) is typical of butterfly clusters and much larger than the tetrahedral angle of 70.5° [1,2,6]. Each edge of the Pt, triangle is bridged by a dppm ligand while each edge of the Pt(1)Pt(2)Ir triangle is bridged by a carbonyl ligand; the atoms of the $P(1)IrPt(1)Pt(2)(\mu$ -CO)₃ unit are approximately coplanar. The carbonylbridged metal-metal distances [Pt(1)-Pt(2) =2.711(1), Pt(1)-Ir = 2.679(1), Pt(2)-Ir = 2.727(1) Å are longer than the unbridged ones [Pt(1)-Pt(3) =2.634(1), Pt(2)-Pt(3) = 2.649(1) Å] [2-4].

The IR spectra* of 2 and 3 each contain three bands due to the μ -CO ligands in the range 1890–1765 cm⁻¹ and 2 also gives a terminal carbonyl band at 1982 cm^{-1} . The similarity of the IR and NMR (vide infra) data for 2 and 3 clearly indicate that they have the same skeletal structure. The observation of a butterfly structure is not unexpected since 2 and 3 have 58electron configurations as in the Pt₂Ir₂ cluster 1 and in several homonuclear Pt₄ clusters [2,6,7]. Such clusters are electron-precise and the wingtip and hinge atoms have 16-electron and 18-electron configurations respectively. Since iridium has a greater tendency than platinum to adopt an 18-electron configuration, iridium is expected to have a preference for the hinge positions and this is what is found in the cluster 1 [2]. Indeed, in all known electron-precise Pt-Ir clusters, namely in 1, the raft cluster $[Pt_3Ir_3(C_5Me_5)_3(CO)_3(\mu (CO)_3$ and in $[PtIr_2(indenyl)_2(CO)_3(PCy_3)]$, the platinum and iridium atoms have 16- and 18-electron configurations respectively [2,3,8]. It is therefore remarkable that in 2 and 3 the iridium atom is in a wingtip position with a 16-electron configuration. The reason for this unusual situation is clearly the presence of the inert $Pt_3(\mu$ -dppm)₃ unit which does not allow a structure with two platinum atoms in wingtip positions. Note that electron-counting for 2, supported by EHMO calculations for the model cluster $[Pt_3Ir(\mu-CO)_3(CO)(\mu-H_2PCH_2PH_2)]^{2+},$; requires a negative charge on iridium and positive charges on the two platinum atoms in the hinge positions and so, if formation of 2 is considered to occur by combination of $[Ir(CO)_3]^-$ and $[Pt_3(\mu-CO)(\mu-dppm)_3]^{2+}$ fragments, little net electron transfer occurs.

The clusters 2 and 3 are highly fluxional. Thus, in the room temperature ³¹P NMR spectrum, 3 gives only one doublet resonance for the phosphorus atoms of the μ -dppm ligands indicating that they are equivalent on the NMR time scale. In agreement, the

[†] Crystal data for 3, C₉₆H₈₁F₆IrO₆P₈Pt₃, monoclinic, P2₁/c, a = 15.016(1), b = 34.618(2), c = 19.615(1) Å, $\beta = 106.662(1)^\circ$, V = 9768(1) Å³, Z = 4, d(calc.) = 1.679 g cm⁻³, R₁(F) [$I > 2\sigma(I)$] = 0.00680, $wR_2(F^2) = 0.1747$.

[‡] The computed charges on the Ir(CO)(μ -CO)₂ and [Pt₃(μ -CO)(μ -H₂PCH₂PH₂)₃] fragments respectively were -1.5 e and +2.5 e, respectively, using an idealized structure based on the structure of 3 and standard parameters supplied with the program CACAO.

phosphite resonance appears as a septet due to long range coupling ${}^{3}J(PP) = 16$ Hz, indicating effective equivalence of the six dppm phosphorus atoms, and also gave a 1:4:7:4:1 multiplet due to the coupling $^{2}J(PtP) = 508$ Hz, characteristic of coupling to three effectively equivalent platinum atoms [8]. In the ³¹P NMR spectrum of 3 at -90° C the dppm resonance split into three very broad resonances ($\delta = -7, -9$ and -19) attributed to the non-equivalent phosphorus atoms P^a , P^b and P^c in 3, and the P(OPh)₃ resonance was also very broad. Similarly, the dppm resonance of 2 at $\delta = -11.9$ at room temperature split into three broad resonances ($\delta = -1.5, -11.5$ and -21.5) at -90° C. The spectra indicate that the 'Ir(μ -CO)₂L' group can migrate very easily about one side of the Pt₃ face with the Pt₂(μ -CO) ligand migrating about the other side, thus leading to effective threefold symmetry (Scheme 2). The observation of the long-range coupling ${}^{3}J(Pt-P(OPh)_{3})$ under conditions of fast fluxionality clearly eliminates the alternative mechanism involving reversible dissociation of the $[Ir(CO)_2L]^-$ group from the cluster.

In summary, the clusters 2 and 3 are of considerable interest as models for Pt/Ir catalysts since each con-

Scheme 2. X = μ -CO; L = CO or P(OPh)₃

tains a coordinatively unsaturated 16-electron iridium and platinum centre. We suggest that the presence of the 16-electron iridium centre is, at least in part, responsible for the particularly easy fluxionality and for the high reactivity of the clusters compared to related butterfly clusters [6,8].

Acknowledgements—We thank the N.S.E.R.C. (Canada) and the Petroleum Research Fund for financial support.

REFERENCES

- (a) Guczi, L., Metal Clusters in Catalysis, B. C. Gates, L. Guczi and H. Knözinger Eds., Elsevier, New York, 1986; (b) Farrugia, L. J. Adv. Organomet. Chem., 1990, 31, 301; (c) Adams, R. D. and Herrmann, W. A., Polyhedron, 1988, 7, 2255; (d) Sinfelt, J. H., Bimetallic Catalysts: Discoveries, Concepts and Applications, Wiley, New York (1983); (e) Xiao, J. and Puddephatt, R. J., Coord. Chem. Rev., 1995, 143, 457.
- Bhaduri, S., Sharma, K. R., Clegg, W., Sheldrick, G. M. and Stalke, D., J. Chem. Soc., Dalton Trans., 1984, 2851.
- Freeman, M. J., Miles, A. D., Murray, M., Orpen, A. G. and Stone, F. G. A., *Polyhedron*, 1984, 3, 1093.
- Fumagalli, A., Pergola, R. D., Bonacina, F., Garlaschelli, L., Moret, M. and Sironi, A., J. Am. Chem. Soc., 1989, 111, 165.
- Xiao, J., Kristof, E., Vittal, J. J. and Puddephatt, R. J., J. Organomet. Chem., 1995, 490, 1.
- Douglas, G., Manojlovic-Muir, Lj., Muri, K. W., Jennings, M. C., Lloyd, B. R., Rashidi, M., Schoettel, G. and Puddephatt, R. J., Organometalics, 1991, 10, 3927.
- Mingos, D. M. P. and May, A. S., in *The Chemistry* of *Metal Cluster complexes*, Shriver, D. F. and Adams, R. D., Eds, VCH, New York (1990).
- Xiao, J., Hao, L., Puddephatt, R. J., Manojlović-Muir, Lj., Muir, K. W. and Torabi, A. A., Organometallics, 1995, 14, 4183.